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Abstract 

A HIGH FRUCTOSE DIET ALTERS AFFECTIVE-LIKE BEHAVIOR AND 
METRICS OF SYNAPTIC MITOCHONDRIAL FUNCTION DIFFERENTIALLY IN 

MALE AND FEMALE RATS 

Alix Holland Kloster 

A thesis in partial fulfillments of the requirements for the degree of Master of 
Science in Anatomy and Neurobiology at Virginia Commonwealth University 

Virginia Commonwealth University, 2019 

Gretchen N. Neigh, Ph.D., Associate Professor, Department of Anatomy and 
Neurobiology 

Fructose consumption has become a normalized part of the standard 
American diet over the past 40 years. Adolescents are the greatest consumers of 
fructose, consuming as much as 21% of their daily energy intake in added sugars, 
likely attributed to the introduction of sweetened beverages. Adolescence is a 
critical time point in development, in particular due to the far-reaching actions of 
the hypothalamic-pituitary-adrenal axis, which matures during this developmental 
phase. While fructose consumption is a known risk factor of metabolic syndrome, 
type 2 diabetes, and cardiovascular disease, there is increasing evidence that 
fructose consumption influences brain and behavior. Recently, more interest has 
been focused on mitochondrial dysfunction as a potential link between metabolic 
stress and modifications of the central nervous system. Mitochondria control 
energy metabolism and cellular signaling, placing them in the unique position of 
both regulating and being vulnerable to alterations in energy homeostasis. Sex-
differences are well categorized in the presentation of metabolic symptoms 
associated with excessive fructose consumption. Thus, it is important to 
characterize sex-specific outcomes in the arena of brain and behavior in order to 
develop better strategies for mitigating the effects of fructose consumption. 
Therefore, I determined the extent to which a high fructose diet modified 
physiological outcomes, serum corticosterone, and affective-like behavior in male 
and female rats. In addition, I examined the potential of excessive fructose 
consumption to modify synaptic mitochondrial respiration at baseline and 
following an acute stress experience.  In male rats, weight, caloric efficiency, and 
circulating blood glucose was unaffected by fructose consumption. Serum 
corticosterone was increased following an acute stress event, and this increase 
was modified by diet. In addition, fructose consumption resulted in decreased 
affective-like behavior in the open field test and synaptic mitochondrial respiration 
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was altered by both diet and acute stress experience. In females, excessive 
fructose consumption altered weight and caloric efficiency, but not circulating 
blood glucose. Females demonstrated increased depressive-like behavior in a 
forced swim test. Corticosterone concentrations were increased by acute stress 
experience, but not by diet, and synaptic mitochondrial function was only 
modified by diet in groups that underwent an acute stressor.  
In this thesis, I will describe our current knowledge of fructose metabolism and 
associated pathophysiological outcomes. This is followed by a description of the 
experimental model system, which was used to demonstrate the effect of the 
dietary challenge on behavioral outcomes and synaptic mitochondrial respiration 
in male and female rats. I will then describe the results collected and discuss the 
ramifications of these results and the potential underlying mechanisms to 
account for differences. The results of this study should help us to better 
understand the role that dietary challenges in adolescence play in behavioral 
disruptions in adulthood and how mitochondrial function may serve as a link 
between metabolic stress and behavioral responses.   
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Chapter One 

Introduction 

In the past 40 years, fructose consumption has become a normalized part 

of the standard American diet due largely to the invention and introduction of 

added caloric sweeteners such as high fructose corn syrup into commercial food 

products (Marriott et al., 2009). As of the early 2000’s, added sugars accounted 

for approximately 16% of all caloric intake, as demonstrated by a nationally 

representative survey conducted from 1994 to 1996 (Bray et al., 2004). Below I 

review data related to the contributions of fructose to metabolic syndrome, which 

may be driven by the way fructose is metabolized. Although metabolic syndrome 

is a well-appreciated consequence of a diet high in fructose, emerging evidence 

also suggests that fructose can impact brain and behavior (Harrell et al., 2015). I 

hypothesized that fructose consumption beginning at weaning would result in 

metabolic disruptions accompanied by increases in anxiety-like and depressive-

like behavior in both male and female rats. Further, I hypothesized that these 

alterations in affective-like behavior would be paralleled by decreases in synaptic 

mitochondrial respiration, and that alterations in respiration would be modified by 

sex.  Collectively, an understanding of the impact of fructose on brain and 

behavior will build a framework within which solutions to fructose-altered 
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metabolic and behavioral patterns can be ascertained. In addition, these data will 

raise awareness regarding the long-term implications of fructose as a dietary 

choice.   

Fructose Metabolism 

High fructose corn syrup was first introduced in the 1970s and is still the 

dominant caloric sweetener consumed in the American diet. High fructose corn 

syrup was first developed using a glucose isomerase to convert cornstarch to 

glucose and then further into fructose (Marshall et al., 1957).  This produced an 

inexpensive alternative to sucrose and other simple sugars already present in the 

American diet, and generated new opportunities for food and beverage 

manufacturers around the world. High fructose corn syrup has since become a 

favorite additive in sweetened non-juice beverages, soft drinks, dairy products, 

baked goods, canned fruits and candies (Bray et al., 2004). While the benefits of 

added sugars such as fructose were clear for manufacturers of these goods, the 

implications of a shift in energy availability on the general consumer population 

are still subject to research.   

The body utilizes glucose as it’s primary source of fuel, but when 

confronted with changes in energetic availability such as an overabundance of 

fructose, a state of disarray can arise. This is because the metabolism of glucose 

and fructose differ in a number of ways that have profound implications for 

energetic homeostasis. At the molecular level, fructose and glucose possess the 

same molecular formula, C6H12O6, but differ in chemical groups present, with 

glucose possessing an aldehyde group on the carbon chain and fructose 
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possessing a ketone group. Glucose and fructose are absorbed at different 

places in the intestinal tract, with glucose being absorbed higher up in the small 

intestine (Havel, 2005). Upon ingestion, fructose is absorbed by the intestinal 

epithelium and transported into the hepatic portal vein. Fructose is preferentially 

metabolized by the liver, where specific enzymes are present for the metabolism 

of fructose (Mayes, 1993), such that little fructose manages to escape the liver 

and enter systemic circulation (Havel, 2005). Studies of tube feeding fed rats and 

starved rats showed a fractional uptake of 55% and 71%, respectively, of 

fructose by the liver (Topping & Mayes, 1971). In humans, it was shown that the 

liver metabolized at least half of intravenously administered fructose (Mendeloff & 

Weichselbaum, 1953). Once in the liver, ATP rapidly phosphorylates fructose to 

fructose-1-phosphate, catalyzed by the first enzyme in fructose pathway, fructose 

kinase (Hers, 1952). Furthermore, fructose bypasses the main rate controlling 

stage of glycolysis catalyzed by phosphofructokinase (Underwood & Newsholme, 

1965). Without this rate-limiting step substrate availability to metabolic pathways 

is substantially increased, with the main byproducts of fructose consumption 

being glucose, glycogen, lactate, and lipids (Exton & Park, 1967). 

Fructose metabolism also has implications for endocrine system 

modification. Unlike glucose, fructose absorbance does not stimulate the release 

of insulin from pancreatic beta cells (Tappy & Le, 2010). Other essential 

metabolic hormones rely on insulin for regulation, such as ghrelin and leptin. 

Leptin, the “satiety hormone” rises in response to insulin, and ghrelin, the “hunger 

hormone” decreases in response to insulin (Teff et al., 2004). As fructose does 



www.manaraa.com

4 

not stimulate the same insulin response as glucose, leptin and ghrelin levels are 

reduced and increased, respectively upon the ingestion of fructose. This has the 

potential to result in excessive caloric intake, which contributes to obesity and 

other metabolic disorders. Additionally, leptin acts on the liver to encourage fat 

oxidation and mobilization. Fructose-induced leptin resistance is suggested to be 

a mechanism in non-alcoholic fatty liver disease (NAFLD), a disease that is 

increasingly associated with metabolic syndrome (Roglans et al., 2007;Vila et al., 

2008; Paschos & Paletas, 2009).  

While excessive fructose consumption encourages caloric intake 

increases, fructose metabolism initiates qualitative changes to energy 

metabolism due to the differences from glucose metabolism described above. 

Experimental studies have linked disorders such as fatty liver and metabolic 

syndrome to fructose consumption independent of excessive calorie intake 

(Nakagawa et al., 2006; Roncal-Jimenez et al., 2011; Gersch et al., 2007). This 

further supports the idea that the differential metabolism of fructose, and not only 

its ability to entice excessive energy intake, contributes to pathophysiological 

outcomes.   

Metabolic Syndrome and Fructose 

In correlation with the increase in fructose consumption in recent years, 

incidence of metabolic syndrome has been steadily on the rise (Ferder et al., 

2010). Metabolic syndrome is defined as a clustering of several known 

physiological risk factors, including, but not limited to, insulin resistance, 
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prothrombosis, hypertension, obesity, and dyslipidemia (Eckel et al., 2005). 

Metabolic syndrome is used to identify patients at a particularly high risk for 

cardiovascular disease and type 2 diabetes (Zimmet et al., 2001). In addition, 

many of the risk factors attributed to metabolic syndrome possess similar 

underlying pathophysiological mechanisms. Fructose consumption stimulates 

metabolic disruption and has been linked to insulin resistance, hypertension, 

diabetes, and obesity. In a study of male rats that were fed a diet enriched with 

fructose initiated in adolescence, fructose-fed rats presented with dyslipidemia, 

insulin resistance, hypertension, and early signs of liver malfunction via higher 

liver weights, all of which are components indicative of metabolic syndrome 

(Dupas et al., 2017). Other studies have implicated fructose consumption in the 

development of metabolic syndrome, and consumption of a high fructose diet 

(HFD) has been used to induce animal models of metabolic syndrome in rats and 

mice (Hwang et al., 1987; Ishimoto et al., 2012). In one study, male Sprague-

Dawley rats were fed either a control diet, a 60% fructose diet, or fructose 

administration via a 10% solution added to drinking water for 8 weeks. Both the 

10% group and the 60% group experienced hypertension, hyperuricemia, and 

hypertriglyceridemia. Interestingly, there was a step-wise progression in 

elevations, with the 60% consumption group having higher levels than the 10% 

group. Additionally, the group consuming the 60% diet experienced renal 

disturbances in the form of renal hypertrophy, cortical vasoconstriction, 

calciphylaxis, and glomerular hypertension (Sanchez-Lozada et al., 2007). In 

hamsters, chronic fructose feeding resulted in elevated plasma triglycerides from 
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intestinal de novo lipogenesis and increased lipoprotein production (Haidari et al., 

2002; Lewis et al., 2005). In hepatocytes, de novo lipogenesis results in the 

conversion of fructose into fatty acids. This conversion to fatty acids was 

demonstrated in vivo in rats (Bar-On & Stein, 1968) and in isolated hepatocytes 

(Topping & Mayes, 1972). In humans, increased fructose consumption stimulated 

lipogenesis, resulting in dyslipidemia and hepatic and adipose tissue insulin 

resistance (Faeh et al., 2005).  

Adolescents and Fructose Consumption 

Of the population consuming fructose, adolescents consume the largest 

proportion of fructose, consuming as much as 21.4% of their total energy intake 

in added sugars (Welsh et al., 2011). The majority of added sugar consumption 

comes from sweetened beverages such as soft drinks and fruit juice, and 

children are the highest consumers of these beverages (Wang et al., 2008). The 

consumption of added sugars in children is positively correlated with a number of 

negative outcomes in both adolescence and further on into adulthood. In the 

United States, adolescents have been experiencing higher incidence of 

metabolic syndrome, obesity and type 2 diabetes with the rise in consumption of 

calorically sweetened beverages and foods (Vatarian et al., 2007). As of 2017, 1 

in 3 children are classified as overweight or obese (Kumar & Kelly, 2017). The 

prevalence of childhood obesity is associated with the emergence of disorders, 

such as type 2 diabetes, dyslipidemia, hypertension, and other diseases 

previously considered to only emerge in adulthood (Welsh et al., 2011). 
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Furthermore, the consumption of a HFD in childhood has been directly linked to 

risk factors associated with cardiovascular disease (Morrison et al., 2009; Welsh 

et al., 2011).  

Aside from the emergence of pathophysiology in adolescence, excessive 

fructose consumption has been shown to have lasting implications into adulthood. 

Childhood adiposity has been shown to track into adulthood (Serdula et al., 1993; 

Singh et al., 2008). Furthermore, studies have shown that adolescent body mass 

index (BMI) is positively associated with a number of metabolic risk factors in 

adulthood such as development of metabolic syndrome, insulin resistance, type 2 

diabetes, and coronary heart disease (Srinivasan et al., 2002; Morrison et al., 

2008; Baker, 2007). In adults, increased consumption of fructose is associated 

with an increased risk of diabetes and metabolic syndrome (Montonen et al., 

2007; Bazzano et al., 2008; Dhingra, 2007). Broadly put, this shift in dietary 

energy homeostasis brought on by overconsumption of added sugars, such as 

fructose, is correlated with increased incidence of peripheral metabolic 

pathophysiology in childhood and adulthood. 

Neural and Behavioral Consequences of Fructose 

It is well established that a HFD negatively impacts peripheral metabolism 

and contributes to pathophysiological outcomes such as metabolic syndrome. 

However, the neurological implications of a HFD are less understood. As with the 

periphery, glucose is traditionally considered the main source of fuel for the brain 

(Harris et al., 2012; Mergenthaler et al., 2013). It is already known that hepatic 
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fructose metabolism utilizes a different set of enzymes that allows it to bypass 

the first rate-limiting steps of glycolysis. Likewise, similar enzymes are present in 

areas of the central nervous system (CNS) that play a part in energy balance 

regulation (Funari et al., 2005; Shu et al., 2006). Furthermore, the ketonic nature 

of fructose necessitates different absorptive and metabolic pathways in the brain, 

as it does in the gastrointestinal system. While over 60% of fructose is 

metabolized by the liver and transformed into lipids, lactate, glucose, glycerol, 

and glycogen, the remaining fructose is available for extrahepatic metabolism 

and reuptake into tissues (Sun & Empie, 2012).  

The direct impact of fructose on cerebral metabolism is less understood. 

Fructose is passively transported across membranes by a glucose transporter, 

GLUT5. While there are other members of the GLUT family, GLUT5 is the only 

transporter specific for fructose, and is unable to transport glucose or galactose. 

Other members of the GLUT family possess varying degrees of fructose 

sensitivity. GLUT5 has been identified in different tissues within the brain, 

including mouse cerebellum (Funari et al., 2005), rat hippocampus (Shu et al., 

2006), human microglia (Payne et al., 1997), and human blood brain barrier 

(Mantych et al., 1993). Furthermore, cerebral glucose transporters, including 

GLUT5, has been shown to be differentially expressed based on brain region, 

age and sex (Kelly et al.,2014). The expression of GLUT5 and of enzymes 

necessary for fructose metabolism indicates that the brain is able to utilize 

fructose as an energy source. Nevertheless, the utilization of fructose and role of 

GLUT5 within the brain is still uncertain. In rodents, central injection of fructose 
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led to a decrease in hypothalamic ATP levels and corresponding increase in 

AMPK activation, whereas glucose resulted in a rapid increase in ATP levels 

within the same time frame. The same study also reported a subsequent drop in 

hypothalamic malonyl-CoA upon central fructose injection, an important 

component in feeding behavior signaling (Cha et al., 2008; Wolfgang, 2007).  In 

humans, functional Magnetic Resonance Imaging (fMRI) was used to study the 

effects of glucose and fructose ingestion on regional cerebral blood flow (CBF), 

an indirect indication of neural activation. Following ingestion of a glucose bolus, 

there was a significantly greater reduction in hypothalamic CBF, compared to 

hypothalamic CBF following the ingestion of a fructose bolus (Page et al., 2013). 

Furthermore, glucose ingestion stimulated increased activity between the 

hypothalamus, thalamus, and striatum whereas fructose ingestion only resulted 

in increased activity between the hypothalamus and thalamus (Page et al., 2013). 

Collectively, these findings suggest that excessive consumption of fructose is 

able to modify cerebral metabolism on multiple levels.  

Because the CNS, particularly the hypothalamus, is the primary regulator 

of energetic homeostasis for the human body (Morton et al., 2006; Elmquist et al., 

2005; Meister, 2007; Myers et al., 2008), perturbations to energetic balance have 

the potential to initiate neurological consequences, outside of the traditional 

scope of metabolism. Previous studies in male rats have shown that a high 

fructose diet initiated in adolescence alters the Hypothalamic Adrenal Pituitary 

(HPA) axis transcriptome, metabolic outcomes, and results in increased 

depressive-like behavior in male rats (Harrell et al., 2015). Metabolic disruptions 
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and associated etiology have consistently been associated with increased risk of 

affective-like disorders, and the bidirectional relationship between dysregulated 

metabolism and mood disorders is the subject of increased research (McIntyre et 

al., 2011; Musselman et al., 1998; Perlmutter et al., 2000). In clinical studies, 

metabolic syndrome and diabetes are highly co-morbid with depression and 

anxiety. In a study of both men and women, participants with any of 5 obesity-

related comorbidities were found to have significantly higher incidence of current 

depression, lifetime diagnosed depression, and lifetime diagnosed anxiety (Zhao 

et al., 2009). In another study of both males and females, metabolic syndrome 

was significantly associated with having a current anxiety disorder and lifetime 

major depression (Kahl et al., 2015). Another study of 1598 subjects, both male 

and female, found that metabolic syndrome occurrence was associated with an 

increased prevalence of depression, but not anxiety, irrespective of gender and 

overweight/obesity status (Skilton et al., 2007). Taken together, these studies 

demonstrate a clear association between metabolic dysfunction and incidence of 

mood disorders. Fructose may be a missing piece in understanding metabolic 

disruptions and their role in mental health, but further studies are necessary to 

understand this connection. 

Metabolism and Mitochondria 

Given that a HFD alters peripheral metabolism, and alterations in 

affective-like behavior have previously been demonstrated in male rats it raises 

the question- to what extent is brain metabolism affected by a fructose-induced 
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change in energy availability? At the cellular level, mitochondrial function is 

critical to examine when investigating the neural underpinnings of behavioral 

alterations in relation to global modifications in energy homeostasis. Mitochondria 

are present in the cytoplasm of all mammalian cells, including neurons and are 

responsible for transforming energetic substrates and oxygen into ATP that can 

be used for energy dependent reactions. Mitochondria are also responsible for 

other critical functions such as cellular calcium buffering, reactive oxygen species 

(ROS) production, and antioxidant mechanisms.  Mitochondria are particularly 

sensitive to the metabolic state of an organism. The oversupply of energetic 

substrates relative to demand has been shown to have an adverse effect on 

mitochondrial structure and function, including increased fragmentation (fission), 

increased production of ROS, and mtDNA damage (Picard & Turnbull, 2013).  

The metabolic machinery of mitochondria produces ROS when single electron 

species are passed down the electron transport chain to terminal oxygen during 

ATP production. At low levels, ROS are necessary for cellular function and play 

important roles in cellular differentiation, apoptosis, immunity, and intracellular 

signaling (Ghosh, 1998; Tohyama & Yamamura, 2004; Roberts &Sindhu, 2009; 

Lambeth, 2004; Lambert & Brand, 2009; Balaban et al., 2005). Importantly, a 

state of oxidative stress arises when mitochondrial production of ROS outpaces 

its ability to inactivate ROS through antioxidant machinery, which leads to 

damage of biomolecules and mtDNA (Yakes & VanHouten, 1997).  

In instances of metabolic pathophysiology such as diabetes, the effects on 

oxidative stress, damage to mtDNA, and altered mitochondrial function are well 
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characterized (Suzuki et al., 1999; Giugliano et al., 1996; Baynes, 1991). 

Furthermore, levels of oxidative stress are increased in patients with metabolic 

syndrome (Ford et al., 2003; Armutcu et al., 2008). Given the correlation between 

HFD and pathophysiological disorders such as metabolic syndrome and diabetes, 

it is pertinent to investigate the effects of fructose on mitochondrial function, 

especially in the context of behavioral alterations and cerebral metabolism. 

Recently, advances in isolation of intact nerve terminals and in vitro respirational 

determination made it possible to investigate cerebral metabolism in animals at 

the time of euthanasia. Synaptosomes are intact nerve terminals formed by 

shearing forces during homogenization of neuronal tissue (Gray & Whittaker, 

1962). The resealing of the plasma membrane following homogenization 

generates a “miniature cell” with intact synaptic vesicles and mitochondria in 

cytoplasm, so that mitochondrial bioenergetics can be studied using real-time 

analysis (Nicholls et al., 2003). Synapses are the energetically demanding area 

of neuronal communication, and therefore ideal areas to investigate the quality of 

cerebral metabolism, specifically mitochondrial integrity.  

Importance of Studying Sex as a Biological Variable 

While there is already a great deal of research on how a HFD affects an 

organism on many levels, it does not give the full picture. The majority of 

previous studies have been conducted in only male subjects; however, females 

are equally susceptible as males to dietary perturbations and associated 

conditions such as metabolic syndrome, Type 2 diabetes, and obesity. The 
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beginning of puberty marks the endocrine system’s regulation of diet-induced 

effects including insulin sensitivity, hypertension, and lipid levels (Vasudevan et 

al., 2005; Chen et al., 1992; Galipeau et al., 2002; Louet et al., 2004) and at this 

point sex differences in metabolism are magnified. Interestingly, women are twice 

as likely to experience depression and anxiety in their lifetime as men, and this 

trend emerges after puberty and persists for the next 30-40 years (Ford& Erlinger, 

2004; Cyranowski et al., 2000).  Despite this interesting co-occurrence, little is 

known about differences in neural mitochondrial function between the sexes.  

Mitochondrial dysfunction is also implicated in a large number of these 

pathologies, including cardiovascular and neurodegenerative disorders (Duchen 

&Szabadkai, 2010; Demarest & McCarthy, 2015). Mitochondria display 

prominent sex-specific and tissue specific behavior in pathophysiological states 

(Ventura-Clapier et al., 2017). In mice, studies show that young female mice 

have lower oxidative stress and a higher reduced NADH-linked respiration rate 

when compared with young males and aged females. Further analysis of brain 

steroid levels revealed higher pregnanolone and progesterone brain levels in 

young females, which decreased with aging in females and were lower in males, 

suggesting these steroids’ contribution to sex-dependent changes in brain 

mitochondrial function (Gaignard et al., 2015). In a study analyzing liver 

mitochondria, and synaptic and non-synaptic brain mitochondria of rats, Borras et 

al. found that peroxide production is significantly decreased in females compared 

to males. Additionally, males demonstrated higher levels of oxidative damage to 
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mitochondrial DNA, and females had higher glutathione levels than males across 

all mitochondrial types (Borras et al., 2003).  

There is prominent evidence on sex as a biological variable in metabolic 

disorders, mitochondrial dysfunction, and clinical presentation of anxiety and 

depressive disorders. Given that previous studies have demonstrated the effect 

of a HFD on affective-like behavior in male rats it is necessary to include females 

in this study in order to better elucidate the effects of excessive fructose 

consumption on affective-like behaviors and mitochondrial dysfunction in 

adulthood.  

I hypothesized that fructose consumption beginning at weaning would 

result in metabolic disruptions accompanied by increases in anxiety-like and 

depressive-like behavior in both male and female rats. Further, we hypothesized 

that these alterations in affective-like behavior would be paralleled by decreases 

in synaptic mitochondrial respiration, and that alterations in respiration would be 

modified by sex.  Following a more in depth description of the materials and 

methods utilized in this study, I will outline the data collected in my study and 

then discuss the implications of the results. 
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Chapter Two 

Materials and Methods 

Animal Husbandry 

Timed pregnant Wistar rats (n=6) were procured from Charles River (Morrisville, 

N.C.). All animals were housed in a temperature (20-23°C) and humidity (60%)

controlled colony room in static cages. The room was kept on a 14:10 light:dark 

cycle. Litters were culled on post natal day (PND) 3 to eight pups per litter (male 

= 4 and female = 4). This was done to ensure an equal sample size of males and 

females with exception of one timed pregnant Wistar rat, which produced a litter 

with only one female pup. The pups were weaned on PND 22 (n= 46) and pair 

housed with same-sex, non-sibling cage mates for the duration of the study. 

Cage mates were assigned to either a control chow diet (Males n=12; Females 

n=10) or a high fructose diet (Males n=14; Females n=10) on PND 25. All studies 

were conducted in accordance with Institutional Animal Care and Use Committee 

of Virginia Commonwealth University and National Institutes of Health Guide for 

the Care and Use of Laboratory Animals.  
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Diet and Metabolic Measurement 

Animals were either maintained on a standard chow diet or placed on a high 

fructose diet beginning at PND 25 and remained on the assigned diet until their 

experimental end point. The chow diet was comprised of the Envigo Lab Diet 

7012 (Teklad LM-485), while the High fructose diet (HFD) was 10% kcal fat and 

55% kcal fructose (Research Diets D050111802), and both diets contained 19% 

kcal protein. Total food consumption was tracked through the duration of the 

experiment by weighing the total remaining food in the cage twice weekly before 

the food was replaced with a pre-weighed amount of new food. Attention was 

paid to food remaining on bottom of cage and all rats received water ad libitum. 

Weights for each animal were taken and recorded biweekly and an average 

weekly weight was calculated. Utilizing average weekly weight coupled with 

weekly food consumption, caloric efficiency (milligram weight gained per 

kilocalorie consumed) was calculated. Due to rats being pair housed, this 

measure is imprecise but serves to elucidate metabolic consequences as a result 

of the experimental diet. 

Blood Glucose Testing 

Blood glucose levels were obtained from experimental subjects at 3 times over 

the course of their lives: end of adolescence (PND 57), end of week 10 on 

assigned diet (prior to behavioral testing), and end of dietary week 12 (prior to 
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experimental endpoint). To accomplish this, a tail prick was done in the lateral tail 

vein using a sterile 25 gauge needle. A Freestyle Glucometer with Freestyle Lite 

test strips (Abbott Diabetes Care Inc., Alameda, CA) was used to obtain the 

reading.  

Vaginal Cytology 

Vaginal cytology was used to assess estrus cycle stage in the female rats over 

an 8-day period from PND 75 to PND 83 prior to behavioral testing. Rats were 

restrained by wrapping them in a bench pad while maintaining an exposed 

vaginal area. Using a 2 mL disposable pipette, approximately 2 µL of phosphate 

buffer solution was used to lavage the vaginal cavity. The sample was smeared 

onto a slide and immediately imaged under a light microscope at 10x. Cycle 

stage was determined based on the relative amounts of either nucleated 

epithelial cells, neutrophils, or anucleated keratinized epithelial cells (Cora et al., 

2015). On the same days that estrus cycle assessment occurred, males were 

similarly wrapped in a bench pad in order to control for any handling effect 

induced during the cytology procedure.  

Behavioral Testing 

Behavioral testing was conducted beginning after the subjects were on their 

designated diet for 10 full weeks at PND 95 and was conducted in order of 
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increasing anxiogenicity of the tasks. Behavioral testing consisted of a 10 minute 

open field test (PND 95), a 10 minute social interaction test (PND 96), and a 10 

minute forced swim test (PND 116). All rats were habituated to the behavioral 

test suite for 3 days prior to testing. The open field test, social interaction test, 

and forced swim test were all conducted in the middle of the rats’ light cycle.  All 

tests were conducted at 100-200 lux. Behavioral testing was video recorded and 

tracked using Ethovision XT (Noldus Information Technologies; Leesburg, VA).  

Open Field Test 

The open field test serves as a measurement of anxiety-like behavior (Prut & 

Belzung, 2003;Gould et al., 2009; Walsh & Cummins, 1976) and consists of 

exposing the test subject to an unfamiliar square arena for ten minutes. The rat 

was placed in the center of a novel, 75 x 75 cm square field with 35 cm high 

walls (Noldus) and allowed to freely explore for ten minutes. The subject was 

assessed on time spent in the center of the arena versus time spent in the 

periphery and for other measurements of anxiety-like behavior such as distance 

traveled, quantity of fecal boli, rearing and grooming behavior (Gould et al., 2009; 

Hall, CS, 1934).  
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Social Interaction Test 

A social interaction test was conducted the day following the initial open field test 

as a measure of anxiety-like and anhedonic behavior (File & Hyde, 1978; File & 

Seth, 2003). In this test the experimental animal was placed in the center of the 

same arena used for the open field test, now containing a novel stimulus rat, and 

allowed to explore and interact for 10 minutes. The stimulus rat was a younger, 

same sex, same strain animal and had prior exposure to the arena. The 

experimental subject’s latency to interaction with the stimulus rat, number of 

approaches to the stimulus rat, and total time spent interacting with stimulus rat 

were scored by hand by a treatment-blind experimenter.  

Forced Swim Test 

A forced swim test was used as a measurement of depressive-like behavior 

(Porsolt et al., 1978). The forced swim test is traditionally used to assess the 

efficacy of anxiolytic and antidepressant drugs over the course of two test 

sessions (Porsolt et al., 1978). In this case a single test was used to measure 

depressive-like behavior (Castro et al., 2010). The rat was placed into a circular, 

acrylic tank (diameter = 19cm; height = 46.5cm) filled with room temperature 

water deep enough so that the rat could not touch the bottom of the tank and 

swam for 10 minutes. Time spent inactive versus actively swimming, latency to 

inactivity, time spent struggling, and exhibition of coping mechanisms, such as 
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diving, were recorded. Inactivity was defined as the rat’s limbs remaining 

motionless for at least 2 seconds and struggling was defined as the rat’s head 

being above the water and limbs breaking the surface. Immediately following the 

forced swim test, rats were removed from the tank, placed in a cage on top of a 

heating pad, and allowed to rest for 20 minutes. Upon conclusion of the 20-

minute rest period, rats were transferred into a separate room and rapidly 

decapitated. While the forced swim test is often used as an indicator of 

depressive-like behavior, the test also served as an acute stressor for the rats. In 

order to assess how an acute stressor impacted measures of mitochondrial 

function and endocrine system function, only half of the cohort underwent the 

forced swim test before euthanasia. The other half were euthanized without 

exposure to the test.  

Tissue Collection 

Following rapid decapitation trunk blood was collected and the kidney, spleen, 

uterus and portions of the liver were dissected, weighed, flash frozen and stored 

at -80°C. Brains were removed from subjects and bisected. The left hemisphere 

underwent rapid Golgi stain (analysis not included in this thesis document) and 

the right hemisphere was utilized for a cell mitochondrial stress test in the 

Seahorse XT Analyzer (Agilent).  
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Corticosterone analyses 

Corticosterone was measured in serum in trunk blood collected at baseline and 

30 minutes after the onset of an acute stressor, in the form of a 10 minute forced 

swim test, using a commercial ELISA (sensitivity 27 pg/mL, Enzo Life Sciences, 

Farmingdale, NY). All samples were run in duplicate with a CV<10%. For 

baseline samples, rats were transferred to a testing room to acclimate prior to 

decapitation. Rats were then transferred to a separate room and decapitated 

within two minutes of handling. Separation of the testing room and the room 

utilized for euthanasia ensured that transfer of scents and noise was hindered 

and that decapitation occurred before a rise in corticosterone.  For the rats 

undergoing the forced swim test, the forced swim occurred in a separate room 

from that used for acclimation and for euthanasia. Following the ten minute 

forced swim test, rats were removed from the tank, briefly dried, and allowed to 

rest for 20 minutes on a heating pad in the same room where the swim occurred. 

Following the 20 minutes, rats were immediately decapitated in the same room 

where the baseline rats were decapitated. Following decapitation, trunk blood 

was collected and allowed to clot at room temperature before the clot was 

removed and remaining blood was placed on ice. Blood was centrifuged 

(Eppendorf 5810R) at 1800 rcf for 20 minutes at 4°C. Resulting serum was 

stored at -80°C for use in ELISAs.  
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Reagent Preparation 

In order to carry out the Corticosterone ELISA, manufacturer’s instructions were 

used. Immediately before use, 1 ml of 1:100 Steroid Displacement Reagent 

(SDR) solution was prepared using deionized water. 10 µl of each sample was 

combined with 10 µl 1:100 SDR solution, vortexed, and allowed to sit for 5 

minutes. After 5 minutes, 280 µl ELISA assay buffer was added to each sample 

and vortexed, generating a final sample dilution of 1:30. Next, the standard 

diluent (Assay Buffer 15) was prepared by diluting 10 ml of the supplied 

concentrate with 90 ml of deionized water. Wash Buffer was similarly made by 

diluting 5 ml of the supplied concentrate with 95 ml of deionized water. 8 

Corticosterone Standards were prepared using 200,000 pg/ml Corticosterone 

standard solution warmed to room temperature and standard diluent (Assay 

Buffer 15). The concentration of corticosterone in standards 1 through 8 was 20 

pg/ml, 12 pg/ml, 8 pg/ml, 4 pg/ml, 2 pg/ml, 0.5 pg/ml, 0.1 pg/ml, and 0.05 pg/ml 

respectively.  

Assay Procedure 

100 µl of standard diluent was placed into the non-specific binding wells (NSB) 

and Bo wells, 100 µl of Standards 1 through 8 were placed in the appropriate 

wells and 100 µl of sample were pipetted into their designated wells. 50 µl of blue 

conjugate was then placed into each well, with exception of the Total Activity 
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(TA) and blank wells, and 50 µl of yellow antibody was placed into each well 

except the blank, TA, and NSB wells. The plate was incubated at room 

temperature on a plate shaker for 2 hours at approximately 500 rpm. Following 

incubation, each well was washed with 400 µl of wash buffer solution 3 times. 5 

µl of blue conjugate was added to the TA wells and 200 µl of pNpp Substrate 

solution was added to each well. The plate was incubated at room temperature 

for 1 hour without shaking. After the final incubation, 50 µl of Stop solution was 

added to each well in order to stop the reaction and the plate was immediately 

read. The plate was read at 405 nm, with correction between 570 and 590nm, 

using a Biotek Synergy HTX Multimode Plate Reader (Winooski, VT).  

Cell Mitochondrial Stress Test 

Preparation of Synaptosomes 

Synaptosomal isolation was adapted from Dunkley et al. (2008). Rats were 

euthanized via rapid decapitation and the whole brain was extracted. The 

cerebellum was removed, the brain was bisected, and the right hemisphere was 

placed in cold sucrose medium (320 mM Sucrose, 0.2 M EDTA, 5 mM Tris, pH 

7.4) to remove excess blood. Tissue was homogenized in a 7mL Dounce glass 

homogenizer containing 4.5 mL cold homogenization buffer (320 mM Sucrose, 

0.2 M EDTA, 50 mM dithiothreitol, 5.0 mM Tris, pH 7.4) by 5 and 6 strokes with 

the loose and tight plunger, respectively. The homogenate was centrifuged 

(Eppendorf 5810R) at 3600 rpm for 10 minutes at 4°C. The supernatant was 
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removed and 6 mL was layered on top of a discontinuous Percoll gradient (4 ml 

layers of 0,3,10,15,23 % Percoll in homogenization buffer) in a 26 mL centrifuge 

tube and spun at 32500g for 10 minutes at 4°C (JA-20 fixed angle rotor in a 

Beckman Avanti J-25 centrifuge). The synaptosomes were isolated from the 

band between the 15% and 23% Percoll layers, diluted in Ionic Media (20 mM 

HEPES, 10 mM D-Glucose, 1.2 mM Na2HPO4, 1 mM MgCl2, 5 mM NaHCO3, 5 

mM KCl, 140 mM NaCl, pH 7.4), and centrifuged at 15000g for 35 minutes at 4°C 

(JA-20 fixed angle rotor in a Beckman Avanti J-25 centrifuge). The final 

synaptosome pellet was collected and protein concentration was determined 

(Nanodrop A280, ThermoFisher Scientific). Synaptosomal protein was 

resuspended in ionic media for respirometry (Choi et al., 2009).  

Respiration Determination 

To quantify respiration, 40 µg of synaptosomal protein per well was aliquoted into 

a 24 well cell culture microplate (Agilent Technologies, Cedar Creek, MO) coated 

with Poly-D-Lysine. Plates were centrifuged at 3400g for 30 minutes at 4°C 

(Eppendorf 5810R centrifuge) in order to adhere the synaptosomes to the plate. 

The medium was then replaced with 500 µl of Seahorse XF assay media 

(Seahorse XF Base Medium (w/o Phenol Red), 10 mM Seahorse XF Glucose, 1 

mM Seahorse XF Pyruvate, 2 mM Seahorse XF L-Glutamine). The microplate 

was then loaded into the Seahorse XFe24 extracellular flux analyzer according to 

the manufacturer’s instructions. Wave Desktop 2.6 Software (Agilent) was used 
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for data acquisition and data analysis for assays. All plates were run at 37°C and 

samples were run in triplicate. The measurement of oxygen consumption and 

extracellular acidification method is as previously described in Choi et al. (2009). 

Oxygen consumption rates (OCR) and extracellular acidification rates (ECAR) 

were determined by sequential measurement cycles consisting of a 30 second 

mixing time followed by a 2 minute wait time and then a 3 minute measurement 

period. Reagents were added in Seahorse assay media in dilutions according to 

manufacturer’s recommendation (2.0 µM Oligomycin, 1.0 µM FCCP, 0.5 µM 

Rotenone/antimycin A per well).  

Statistical Analyses 

Data were analyzed using GraphPad Prism Software (San Diego, CA) and R x64 

version 3.5.1 for Mac OS10. Three- way Analysis of variance (ANOVA) were run 

in R to compare physiological changes associated with sex and diet across the 

10 week diet and to compare sex and diet-induced changes observed in oxygen 

consumption rates at baseline and following the 10 minute forced swim test. 

Two-tailed unpaired t tests or two-way ANOVA’s were used to analyze where 

significant main effects or interactions occurred (p≤0.05) using GraphPad.  

Sidak’s posthoc analysis was used when appropriate (p≤0.05).  
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Chapter Three 

Results 

A high fructose diet initiated in adolescence alters physiology in females, but not 

males 

Three-way ANOVA showed a main effect of sex (F(1,420)=4071.63;p<0.001), diet 

(F(1,420)=14.26;p<0.001), and week on the diet (F(9,420)=1397.83; p<0.001), as well 

as significant interactions between sex and diet (F(1,420)=6.27; p=0.013), sex and 

week (F(9,420)=137.19; p<0.001), and diet and week (F(9,420)=2.42; p=0.011) on 

weekly weight gain (Figure 1.A). All groups, regardless of sex and diet, gained 

weight over the course of the 10-week dietary window, consistent with expected 

animal growth. In females, individual 2-way ANOVAs displayed a main effect of 

week (F(9,180)=429.3;p<0.0001), diet (F(1,180)=27.05; p<0.0001), and a significant 

interaction between week and diet (F(9,180)=3.615; p=0.0004), such that fructose-

fed females gained more weight per week than chow-fed controls beginning at 

week 7 (PND 73) and persisting through the remainder or the 10 week dietary 

period. In males, diet did not affect weight gain (F(1,240)=0.3417; p=0.5594).  

Caloric efficiency was calculated by dividing weight gained per week by the 

estimated amount of calories consumed per week. Caloric consumption was 

estimated from the total grams of food consumed per animal multiplied by the 

known caloric content of the respective diet (3.35kcal/gram of chow; 3.85 

kcal/gram of HFD). Three-way ANOVA displayed a main effect of sex 
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(F(1,378)=315.03; p<0.0001), diet (F(1,378)=16.96; p<0.0001), and week 

(F(8,378)=487.35; p<0.0001). Three-way ANOVA also displayed a significant 

interaction between sex and diet (F(1,378)=20.17; p<0.0001), sex and week 

(F(8,378)=5.37; p<0.0001), and diet and week (F(8,378)=3.08; p=0.00226) (Figure 

1.B). Regardless of sex, caloric efficiency declined weekly. Diet did not alter

caloric efficiency in males (p>0.05). However, in females, two-way ANOVA 

demonstrated a main effect of week (F(8,162)= 136.4; p<0.0001) and diet 

(F(1,162)=34.26;p<0.0001) with a significant interaction between week and diet 

(F(8,162)=2.947; p=0.0042). Sidak’s multiple comparisons test revealed that this 

interaction was driven by weeks 5 (p=0.0013) and 6 (p=0.0492), such that 

fructose-fed females in week 5 and 6 were gaining more weight per calorie 

consumed compared to their chow-fed counterparts.  

Unpaired t-tests displayed that in both males and females, circulating blood 

glucose was not affected by diet (p>0.05) (Table 1).  

High fructose diet decreases anxiety-like behavior in males, but not in females in 

the open field 

In the open field test, two-way ANOVA displayed a main effect of sex 

(F(1,42)=4.241; p=0.0457) in distance traveled (in centimeters) in the 10 minute 

open field test. When collapsed across diet, females traveled further than males 

(Figure 2.C). Neither sex (p>0.05), nor diet (p>0.05) affected the animal’s time 

spent in the center of the arena as compared to the periphery (Figure 2.B). 
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However, frequency of crosses into the center was affected by diet in males. An 

unpaired t-test displayed a main effect of diet in males (p=0.0200), such that 

fructose-fed males were crossing into the center of the arena more frequently 

than chow-fed controls. In females, number of crosses into the center was not 

impacted by diet (p>0.05) (Figure 2.A).  

In both sexes, social behavior was not impacted by diet 

In the social interaction test, unpaired t-tests displayed that diet did not 

impact the latency of the experimental rats to approach the stimulus rats (Figure 

3.A), the number of approaches of the experimental rats on the stimulus rats

(Figure 3.B), or the total time rats spent interacting in the arena in both males 

and females (p>0.05) (Figure 3.C).  

High fructose diet modifies behavior following the introduction of an acute 

stressor, in the form of a forced swim test 

Following the introduction of an acute stressor in the form of a 10-minute 

forced swim test, two-way ANOVAs were conducted assessing the impact of sex 

and diet. Two-way ANOVA displayed a main effect of sex (F(1,19)=37.94; 

p<0.0001), demonstrating that males spent more time actively struggling in the 

tank than females (Figure 4.C). ). With regard to latency to inactivity, two-way 

ANOVA indicated a main effect of sex (F(1,19)=7.378; p=0.0137), but no effect of 



www.manaraa.com

29 

diet, such that males took a longer amount of time to cease activity in the tank 

(Figure 4.A). In addition, two-way ANOVA of time spent inactive in the forced 

swim test revealed a main effect of sex (F(1,19)=20.94; p=0.0002) and diet 

(F(1,19)=15.44; p=0.0009) and a significant interaction between sex and diet 

(F(1,19)=6.271; p=0.0215). Further analysis using unpaired t-test displayed a main 

effect of diet in females (F(4,4)=14.53; p=0.0127), such that fructose-fed animals 

spent more time inactive than chow-fed controls (Figure 4.B) 

Corticosterone concentration in rats were affected by acute stress event in males 

and females, and this effect was modified by diet in males 

In males, corticosterone levels were impacted by the experience of an 

acute stressor. Two-way ANOVA of male corticosterone concentration displayed 

a main effect of diet (F(1,17)=8.66; p=0.0091) and acute stress experience 

(F(1,17)=97.13; p<0.0001). Sidaks’ multiple comparisons test revealed that 

regardless of dietary history, experience of an acute stress resulted in 

significantly higher corticosterone concentration (Chow, p<0.0001; Fructose, 

p=0.0007) (Figure 5.A). Further unpaired t-test revealed no main effect of diet in 

baseline males; however, in groups undergoing the forced swim test there was a 

main effect of diet (F(5,5)=1.574; p=0.0134) such that fructose-fed animals had 

lower corticosterone concentrations than their chow counterparts (Figure 5.A). In 

females, two-way ANOVA revealed a main effect of acute stress history 

(F(1,15)=22.89; p=0.0002), such that females experiencing an acute stressor 



www.manaraa.com

30 

displayed higher corticosterone concentration (Figure 5.B). Diet did not impact 

corticosterone concentrations in females (p>0.05) (Figure 5.B).  

High Fructose Diet impacts mitochondrial performance in both males and 

females 

Oxygen consumption rate (OCR) was modified by HFD at baseline and in 

the event of an acute stressor. Multi-factor ANOVA displayed a main effect of sex 

(F(1,312)=8.00; p=0.0049), acute stress experience (F(1,312)=24.36,p<0.0001), and 

measurement (F(11,312)=60.29; p<0.0001). Significant interactions occurred 

between sex and diet (F(1,312)=24.41; p<0.0001) and sex and acute stress 

experience (F(1,312)=6.33; p=0.0012). Individual three-way ANOVAs were then 

conducted separating male data from female data. In males, there was a main 

effect of diet (F(1,180)=14.28; p=0.00021), acute stress experience (F(1,180)=28.28; 

p<0.0001) and measurement (F(11,180)=38.66; p<0.0001). No significant 

interactions were present. Further two-way ANOVAs indicated that in both chow-

fed and fructose-fed males there was a main effect of forced swim test 

(F(1,96)=11.96, p=0.0009; F(1,84)=16.58, p=0.0001) (Figure 6.B). Males undergoing 

the forced swim test demonstrated increased OCR compared to baseline 

controls, in both dietary groups. In addition, in both baseline groups and forced 

swim groups, there was a main effect of diet (F(1,84)=8.967, p=0.0036; 

F(1,96)=5.444, p=0.0217), such that fructose fed animals showed decreased OCR 

regardless of stress history (Figures 6.B).  
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 In females, there was a main effect of diet (F(1,132)=10.66; p=0.00014) and 

measurement (F(11,132)=22.08; p<0.0001), but not of acute stress experience 

(Figure 6.C). Again, no significant interactions were evident.  Two-way ANOVA 

revealed that the main effect of diet appeared in females undergoing the forced 

swim test (F(1,72)=9.799, p=0.0025). Interestingly, fructose-fed animals 

undergoing the forced swim test demonstrated a higher OCR than chow-fed 

counterparts (Figure 6.C). Baseline females demonstrated no effect of diet 

(p>0.05)(Figure 6.C). Three-way ANOVAs conducted on individual indices of 

mitochondrial quality, including spare respiratory capacity and maximal 

respiration rate, displayed no main effect of sex, diet, or acute stress experience 

(p>0.05).  



www.manaraa.com

32 



www.manaraa.com

33 

Figure 1: An adolescent high fructose diet resulted in physiological differences in 
females, but not in males. A) Fructose-fed female rats gained more weight than 
their chow-fed counterparts beginning in week 8 of the dietary paradigm/ This 
effect was maintained throughout the 10 week consumption period. Symbols 
represent mean ± SEM. *p<0.05. B) The fructose diet altered caloric efficiency in 
female rats during weeks 5 and 6 on the diet. Alterations were not present in 
males. The caloric efficiency of both male and female rats decreased over time. 
Symbols represent mean ± SEM. *p<0.05. 
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Table 1 

Week on 
Diet 

Males 
Chow Fructose 

P Value Mean 
(mg/dl) SEM 

Mean 
(mg/dl) SEM 

5 103.3 6.083 104.1 3.844 0.9074 
10 76.67 3.278 83.21 2.219 0.1031 
12 78.67 2.385 86.07 2.763 0.0577 

Week on 
Diet 

Females 
Chow Fructose 

P Value Mean 
(mg/dl) SEM 

Mean 
(mg/dl) SEM 

5 90.7 4.897 100.8 4.363 0.141 
10 77.4 2.291 82.1 2.178 0.1544 
12 82.2 2.682 84.9 1.76 0.4111 
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Table 1: Consumption of a high fructose diet did not alter circulating blood 
glucose levels in male or female rats. Symbols represent mean ± SEM.  
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Figure 2: Fructose consumption induced increases in exploratory behavior in 
male rats, but not in female rats. A) Fructose-fed male rats demonstrated a high 
number of crosses into the center of the open field arena compared to chow-fed 
males. B) Amount of time spent in center of arena relative to the periphery was 
not altered by diet in males or females. C) Distance traveled in the open field was 
not modified by diet in either males or females. Symbols represent mean ± SEM. 
Letters indicate effects with p<0.05. 
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Figure 3: In both sexes, social behavior was not affected by consumption of a 
high fructose diet. Symbols represent mean ± SEM. 
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Figure 4: Consumption of a HFD resulted in increases in depressive-like 
behavior in the forced swim test in females. A) Latency to inactivity was not 
affected by diet in males or females in the forced swim test. B) Females fed a 
HFD spent more time inactive in the forced swim test than their chow-fed 
counterparts. Total time spent inactive in the tank was not modified by diet in 
males. C) Total time spent struggling was not modified by diet in males or 
females. Symbols represent mean ± SEM. Letters indicate effects with p<0.05. 
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Figure 5: Introduction of an acute stressor in the form of a 10 minute forced 
swim test increased blood corticosterone concentrations in both sexes, and this 
effect was modified by diet in males. A) In males, an acute stressor significantly 
increased corticosterone concentrations. In groups undergoing the forced swim 
test, corticosterone concentrations were decreased in those fed a HFD. B) In 
females, corticosterone concentrations were only modified by acute stress 
experience. Symbols represent mean ± SEM. Letters indicate effects with p<0.05. 
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Figure 6: In both sexes, mitochondrial respiration was modified by diet, but only 
by acute stress introduction in males. A) Transmission electron microscopy 
image of a synaptosomal preparation collected in the lab. B) In males, acute 
stress experience significantly increased OCR in comparison to baseline groups. 
Regardless of stress experience, fructose-fed males demonstrated significantly 
lower oxygen consumption compared to chow-fed males. C) Acute stress 
experience did not affect mitochondrial respiration in females. In females 
undergoing the FST, fructose-fed females had significantly increased respiration 
rates compared to chow-fed females. Symbols represent mean ± SEM. *p<0.05. 



www.manaraa.com

  46 

Chapter Four 

 

Discussion 

 

Recently, more emphasis has been placed on investigating the deleterious 

effects of metabolic stress on behavioral and neurological outcomes. Excessive 

fructose consumption has been extensively characterized as a risk factor for 

peripheral epidemiology (Dupas et al., 2017; Sanchez-Lozada et al., 2007; 

Montonen et al., 2007). Adolescents are extremely vulnerable to 

overconsumption of fructose-laden foods, conferring a window of susceptibility 

during important developmental periods (Wang et al., 2008; Welsh et al., 2011). 

The findings in this study demonstrate that disproportionate consumption of 

fructose initiated in adolescence alters physiology, behavior, and synaptic 

mitochondrial respiration in a sex-specific manner.  

 

Fructose consumption modifies physiological parameters 

Consumption of a HFD altered the physiological parameters assessed in 

this study in female rats, but not in male rats. Fructose-fed females gained more 

weight than chow-fed females beginning at 8 weeks on the diet. This is 

consistent with previous findings in our lab (Hyer et al., 2019, in review). Fructose 

is more lipogenic than glucose, leading to elevations in triglycerides and 

increased adiposity, possibly accounting for weight differences seen in female 

groups (Hallfrisch, 1990). Additionally, caloric efficiency was modified by diet in 
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weeks 5 and 6 of the paradigm in female rats, indicating that alterations in energy 

utilization are a possible source of the observed increases in body mass beyond 

that of the control-fed female rats. Literature reflects the ability of fructose to 

induce alterations in energy utilization when compared to glucose. In one clinical 

study males and post-menopausal females ingested either a high glucose diet or 

a HFD over the course of 10 weeks. Despite comparable increases in body 

weight, resting energy expenditure significantly decreased in subjects consuming 

fructose. This could result in weight gain if energy intake is not downwardly 

adjusted (Cox et al., 2012). Another study of short-term fructose ingestion in 

females reported that postprandial energy expenditure and thermogenesis was 

significantly increased in females consuming a bolus of fructose, compared to 

glucose (Schwarz et al., 1992). However, this study was conducted following a 

single meal of fructose, and did not cover the impact of a long-term dietary 

modification. Taken together, these studies elucidate that fructose metabolism 

initiates metabolic changes different from that of traditional glucose metabolism, 

and varying outcomes widely depend on experimental design.   

Although weight, caloric efficiency, and blood glucose in males were not 

affected by diet, other studies in our lab have shown elevated circulating glucose 

and elevated circulating uric acid in males following a 10 week HFD, independent 

of weight gain (Hyer et al., 2019, in review). Traditionally, weight gain or 

alterations in caloric efficiency are the most superficial indication that metabolic 

alterations have occurred. However, the absence of modifications in body weight 

does not mean that maladaptive qualitative changes have not occurred with the 
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introduction of a HFD. Many studies have been conducted where ingestion of a 

HFD induced pathophysiological states indicative of metabolic syndrome 

independent of obesity (Tran et al., 2009; Hyer et al., 2019, in review; Harrell et 

al., 2015). Previously in our group, Harrell and colleagues notably demonstrated 

that while obesity did not occur in fructose-fed rats, increased weight of perirenal 

fat pads in fructose groups indicated a change in body composition based on diet 

(Harrell et al., 2015). Unfortunately, this metric was not assessed in the present 

study. During collections it was difficult to markedly distinguish perirenal fat pads 

from surrounding visceral fat and fat pads were not collected. If additional cohorts 

were generated, fat pad collection would be a priority during collections in order 

to confirm body composition changes.   

Affective-like behavior modifications following a HFD 

Chronic exposure to fructose resulted in anxiety-like behavioral 

modifications. In male rats, fructose-fed rats demonstrated increased central 

tendency in the open field, a validated measurement of anxiety-like behavior 

(Prut & Belzung, 2003). However, diet did not modify distance traveled or the 

percentage of time spent in the center relative to the periphery within the open 

field arena. This suggests that fructose consumption heightened exploratory 

behavior, thus representing a decrease in anxiety-like behavior in a novel 

environment. Indeed, this result is counterintuitive and contrary to previous 

findings. Harrell et al., previously demonstrated increases in anxiety-like behavior 

in the open field and alterations in the hypothalamic gene transcriptome in 
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fructose-fed male rats (Harrell et al., 2015). Another study by O’Flaherty and 

colleagues demonstrated no effect of fructose consumption on affective-like 

behavior, including within the open field, in male Sprague-Dawley rats 

(O’Flaherty et al., 2019). This is perhaps due to inherent genetic differences 

between strains. In addition, seemingly innocuous differences in environment 

could be responsible for differential behavioral outcomes. For example, 

differences in environmental enrichment have been shown to mitigate the effect 

of chronic stress on fear-conditioned behavior (Mitra & Sapolsky; 2009). Also, 

differences in bedding material and frequency of cage changes affected body 

weight and inflammatory markers in rodents (Yildirim et al., 2017). In one study, 

identical mouse strains demonstrated differing outcomes on 6 behavioral tests in 

3 different labs despite extremely thorough attempts at standardizing protocols 

and controlling environmental factors (Simpson & Kelly, 2011). While the open 

field test in the present study reported opposite findings, it serves to recapitulate 

the malleability of the behavioral response in the face of a chronic metabolic 

disturbance. Interestingly, in this study fructose-fed female rats demonstrated no 

modifications in the open field test when compared to chow-fed females. 

Furthermore, neither males nor females demonstrated alterations in social 

behavior within the social interaction test.  

In the forced swim test (FST), a validated measurement of depressive-like 

behavior (Porsolt et al., 1978), fructose-fed females exhibited increased floating 

time, indicative of a depressive-like phenotype. Importantly, increased floating 

time potentially demonstrates blunted ability to respond to a period of increased 
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energetic demand. The FST acted as an acute stressor, and in order to 

overcome this stress mobilized substrates are utilized to return to homeostasis. 

While the increase in floating time traditionally indicates an increase in 

depressive-like behavior, it may also dictate a disruption in metabolism, such that 

fructose-fed females are unable to efficiently perform the proper compensatory 

mechanisms to return to energetic homeostasis. Notably, fructose-fed males did 

not demonstrate increased floating time in the FST, as demonstrated in previous 

studies within our group (Harrell et al., 2015). However, there was a trend 

towards increased floating in fructose-fed males, but given that group sizes were 

at most 7 animals, groups may not have been large enough to detect differences 

at the 0.05 level. As it happens, power analysis of the FST revealed that sample 

sizes for each group would need to be 30 animals to reliably detect main effects. 

While this sample size is outside of what was possible for the present study, it 

does confirm that fructose-fed males were tracking in the direction of the 

previously reported data.  

Diet and acute stress experience altered glucocorticoid output 

The 10-week dietary window was initiated in adolescence, a particularly 

vulnerable time for development of the HPA axis (Gunnar & Donzella, 2001; 

Panagiotakopoulos & Neigh, 2014). As previously discussed, the HPA axis is the 

primary central regulator of energetic homeostasis in the body through the 

employment of hormonal cascades. The glucocorticoid, cortisol (corticosterone in 

rodents) has been of primary interest in the study of metabolic dysfunction due to 
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its ability to influence glucose homeostasis and energy mobilization, especially in 

response to times of biological and psychosocial stress. Thus, investigation into 

corticosterone concentrations provides an interesting bridge between behavior, 

HPA axis function, and metabolism. In males, modification of the HPA-axis was 

reflected via modifications to glucocorticoid output following the FST. 

Measurement of corticosterone production following an acute stressor indicated 

that fructose-fed male rats produced significantly less corticosterone than chow-

fed rats also experiencing the acute stressor, but both groups released 

significantly more corticosterone than baseline males, regardless of diet. 

Interestingly, in this study fructose-fed female rats demonstrated increased 

depressive-like behavior when compared to chow-fed rats in inactivity in the FST. 

However, corticosterone response to an acute stressor was not modified by diet 

in females as it was in the male group. In the literature, depressive-like behavior 

is positively associated with increases in corticosterone concentrations (Ali et al., 

2015; Johnson et al., 2006). The disconnect between the increase in depressive-

like behavior and absence of modification in corticosterone concentrations in 

fructose-fed females indicates that a metabolic consequence of the HFD may be 

responsible for counteracting HPA axis dysfunction, which may be explained 

through the investigation of mitochondrial function. Unsurprisingly, both male and 

female rats displayed increased corticosterone concentrations following the FST 

when compared to baseline rats.  

Excessive fructose consumption inflicts chronic energetic stress on the 

HPA-axis, resulting in the HPA-axis being unable to efficiently perform its 
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physiological role, and being less responsive to environmental stimuli. Works in 

the arena of chronic stress research support this concept. In the present study, 

male rats did not demonstrate increases in depressive-like behavior in the FST. 

In contrast, fructose-fed females displayed increased depressive-like behavior in 

the FST. However, previous work by our group has shown increases in 

depressive-like behavior in male rats following a HFD in the form of increased 

time inactive in the FST (Harrell et al., 2015). This provides an interesting context 

to the glucocorticoid response of the rats. Work by Peeters et al. (2003) 

investigated cortisol responses to negative and positive daily events in healthy 

and depressed patients, with an emphasis on gender differences. Depressed 

men showed blunted cortisol concentrations in response to a negative event, 

compared to healthy men. Additionally, depressed women demonstrated a larger 

cortisol response than depressed men to negative events (Peeters et al., 2003). 

Previous studies have reported blunted cortisol response to an acute stressor in 

healthy males with a history of chronic stress (Matthews et al., 2001). These 

clinical findings demonstrated that cortisol response to an acute stressor in 

women was unaffected by a history of chronic stress, suggesting that women are 

less responsive to environmental factors, such as a dietary disturbance, than 

men (Matthews et al., 2001). This possibly accounts for the fact that despite an 

increase in depressive-like behavior in the fructose-fed female rats, 

corticosterone concentrations were unaffected by diet. Alternatively, fructose 

consumption may have initiated divergent changes in metabolism in males and 



www.manaraa.com

53 

females, necessitating different glucocorticoid responses in the face of an acute 

stressor.  

Acute stress experience alters oxygen consumption rates 

In this study, I chose to investigate metabolic modifications through the 

quantification of mitochondrial respiration in the brain. Acute stress experience 

impacted mitochondrial respiration in males, but not in females. Males 

undergoing the FST demonstrated increased oxygen consumption rate (OCR) 

regardless of diet when compared to baseline controls. While the FST represents 

an acute stressor, it also constitutes a period of increased energetic demand in 

order to overcome this stress. Due to this increased energetic demand it is 

perhaps unsurprising that mitochondrial respiration increased in response. 

Globally, mitochondria are particularly sensitive to challenges to homeostasis 

and adjust their bioenergetic output accordingly (Manoli et al., 2007). In response 

to stress, a cascade of hormones (such as corticosterone) is initiated in the CNS 

to mobilize substrates to meet the energetic demands of the ‘fight or flight 

response’. These substrates are then available for oxidation by the mitochondria. 

Short-term exposure to elevated levels of glucocorticoids, as demonstrated by 

increased corticosterone concentrations following the FST, is associated with 

increased mitochondrial biogenesis and other enzymatic responses of respiratory 

chain complexes. In one study of skeletal muscle in male rats, Weber et al. 

demonstrated that short-term exposure of skeletal muscle cells to a synthetic 

glucocorticoid resulted in transcriptional stimulation of mtDNA, resulting in the 
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upregulation of mitochondrial biogenesis (Weber et al., 2002). Another study 

involving 24 weeks of chronic exercise and mice, revealed that following 24 

weeks of chronic exercise, cytochrome oxidase, the enzyme that catalyzes 

mitochondrial oxygen uptake, showed increased activity in the brain of both male 

and female mice (Navarro et al., 2004). Taken together, these studies support 

the increased OCR in males undergoing the FST, as it was an acute period of 

energetic demand and increased substrate availability. In contrast, females 

undergoing the FST did not demonstrate significant modifications of OCR as a 

result of the FST. In a study investigating sex differences in mitochondrial 

biogenesis via mitochondrial protein synthesis in response to Sprint interval 

training, Scalzo et al. found that mitochondrial biogenesis was higher in males 

than females following 9 sprint interval training sessions over the course of 4 

weeks (Scalzo et al., 2014). In conjunction with our studies, perhaps the 20-

minute recovery period following the 10-minute FST was insufficient time in 

females to reflect changes in OCR as compared to males. 

Dietary modification of mitochondrial respiration 

Fructose-fed males demonstrated a decreased OCR in comparison to 

chow-fed counterparts, regardless of acute stress experience. This perhaps ties 

into the blunted response demonstrated in the corticosterone results, indicating 

that excessive consumption of fructose has hindered mitochondrial bioenergetic 

efficiency, possibly through reduced mitochondrial content or impaired 

mitochondrial function. This decrease in overall mitochondrial respiration may be 
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due to a number of factors. Metabolic syndrome and type 2 diabetes have been 

linked to specific mitochondrial tRNA mutations and other mtDNA abnormalities 

(Wilson et al., 2004; Patti et al., 2003; Nishio et al., 2004). Even excessive 

fructose consumption for as little as two weeks has been shown to increase 

inflammation markers, oxidative stress, and decreased mitochondrial oxygen 

consumption in the hippocampus of adult rats (Cigliano et al., 2018). Other 

studies have also dictated the negative impact of fructose consumption on 

mitochondrial function and increased oxidative stress (Mastrocola et al., 2016).  

This decrease could also be attributed to a variety of unique properties of the 

mitochondria. Dependent on their environment, mitochondria undergo dynamic 

changes to their morphology in order to regulate bioenergetics and energy 

efficiency. Under instances of acute stress, mitochondrial fusion occurs, resulting 

in interconnected and enlarged structures, which promote survival and energy 

expenditure. In contrast, mitochondrial fission results in fragmented and solitary 

mitochondria, signaling the cell for apoptosis. Mitochondrial fission is frequently 

observed in instances of long-term metabolic disturbances, such as in type 2 

diabetes and metabolic syndrome (Liesa & Shirihai, 2013; Picard et al., 2014). 

However, at this time relatively little is known about the effect of diet on 

mitochondrial dynamics, especially in the context of brain tissue. Other studies 

have demonstrated that a HFD disrupts insulin signaling in the brain (Agrawal & 

Gomez-Pinilla, 2012). Insulin is a potent regulator of mitochondrial biogenesis 

and fructose’s influence on this cascade could provide an explanation to 

decreased mitochondrial biogenesis as a result of excessive fructose 
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consumption. In addition, Agrawal et al. demonstrated that excessive dietary 

fructose reduced hippocampal mitochondrial OCR and reduced levels of proteins 

related to cellular energy metabolism (Agrawal et al., 2015). In conjunction with 

one another, these studies provide a number of possibilities to account for the 

decrease of OCR in fructose-fed males whether altered biogenesis, 

mitochondrial structure, or mitochondrial efficiency is at play.  

With regard to diet, OCR was significantly impacted by fructose 

consumption in females. Contrary to findings in males, the HFD resulted in an 

increase in OCR in females undergoing the FST when compared to chow-fed 

females undergoing the FST. However, there was no effect of diet apparent in 

baseline females. In context of the brain, estrogen has been widely reported to 

provide a neuroprotective effect in the face of homeostatic challenges (Arevalo et 

al., 2015), including in the context of metabolic disorders (Carswell et al., 2000; 

Toung et al., 2000). Furthermore, several studies report that the neuroprotective 

effects of estrogen may act through specific mitochondrial mechanisms, such as 

hindering excessive ROS production, regulation of mitochondrial Ca2+ loading, 

and the preservation of mitochondrial membrane integrity during times of stress 

(Wang et al., 2001; Nilsen et al., 2003; Wang et al., 2006). Studies conducted in 

both male and female Wistar rats have reported that synaptic mitochondria of 

female rats produce less ROS than males, resulting in less oxidative damage to 

mitochondria (Sastre et al., 2004). Female resilience to mitochondrial damage 

may be responsible for the lack of effect seen in baseline females. In addition, 

the increase in OCR of fructose-fed females undergoing the FST relative to 
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chow-fed females provides interesting context to the lack of effect of diet on 

corticosterone concentrations seen in fructose-fed females undergoing the FST.  

Mitochondria contain powerful antioxidant machineries that assist in the body’s 

defense against ROS.  Additionally, many studies have documented the effect of 

known cytoplasmic antioxidants, such as resveratrol, on serum corticosterone 

concentrations and depressive-like behavior (Johnson et al., 2006; Liu et al., 

2014). Increases in depressive-like behavior are associated with increases in 

serum corticosterone levels, such that corticosterone administration is often used 

to induce depressive-like behavior in rodents (Johnson et al., 2006) Given the 

upregulation of mitochondrial respiration in the fructose-fed females in the FST, it 

is plausible that this resulted in higher efficacy of mitochondrial antioxidant 

mechanisms, leading to the lack of dietary effect on corticosterone 

concentrations observed in these rats. Additional research is needed to confirm 

this hypothesis. It would be beneficial to investigate further markers of oxidative 

stress and antioxidant status, such as serum total antioxidant status and lipid 

peroxidation markers. 

 

Future Aims and Conclusions 

Further investigation is necessary to fully understand the implications of 

the data presented in this study. In order to confirm that physiological 

modifications have occurred in male and female subjects, remaining serum 

samples should be tested for elevated triglyceride levels. Chronic kidney disease 

is increasingly implicated in the manifestation of metabolic syndrome and type 2 
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diabetes. Therefore, kidneys collected from this cohort should be investigated for 

morphological changes under light microscopy such as vacuolar degeneration in 

the epithelial cells of proximal tubules (Bratoeva et al., 2017).  

In regard to glucocorticoid investigations, fecal samples from the distal 

colon were collected from all animals in this study. Fecal corticosterone levels 

are not as readily susceptible to acute stressors as serum corticosterone levels 

(Thanos et al., 2009). Therefore, a fecal corticosterone ELISA could be used to 

confirm dietary modifications of glucocorticoid metabolites, and provide a more 

robust sample size when the FST is excluded as a variable.  

Importantly, future studies are needed to explore the interaction between 

dietary fructose and synaptic mitochondria. The present study reveals that 

excessive fructose consumption decreases synaptic mitochondrial function in 

males and increases respiration in fructose-fed females in the FST. However, the 

specific mechanisms of these actions are yet undefined. Due to the lack of 

significance seen in individual mitochondrial indices, it is probable that overall 

quantity of viable mitochondria is somehow modified following the HFD. Staining 

and imaging of mitochondria with fluorescent probes would be useful in looking at 

mitochondrial morphology and quantity to compare whether fructose 

consumption promotes mitochondrial fission or led to mitochondrial density 

changes in synapses. Other studies report sex differences in synaptosomal 

functional studies. Mitrovic et al. reported that glutamate and aspartate transport 

in synaptosomes was significantly impacted by cycle stage in females (Mitrovic et 

al., 1999). Also, Oztas et al., demonstrated significantly decreased synaptosomal 
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Na(+)K(+)ATPase activity and increased BBB permeability following water 

intoxication in females (Oztas et al., 2000). These studies support the idea that 

mitochondrial respiration is significantly impacted by sex, and the data presented 

here dictate the necessity of maintaining sex as a biological variable in future 

studies. As previously discussed, it would be useful to quantify antioxidant levels, 

such as glutathione reductase and glutathione peroxidase, and markers of 

oxidative stress, such as malondialdehyde (MDA) and reduced glutathione, in 

brain tissue. Additionally, resveratrol administration has been shown to provide a 

neuroprotective affect against oxidative stress (Sinha et al., 2002) and to reverse 

depressive-like behavior following chronic unpredictable stress (Liu et al., 2014). 

Therefore, I believe that mitochondrial respiration assessment following 

administration of a known antioxidant, such as resveratrol, would provide 

mechanistic insight into the dietary modifications shown in this study.  

Given that hypothalamic gene expression in males was previously 

demonstrated in conjunction with altered affective-like behavior and hormonal 

outcomes, it would be interesting to see if similar alterations occur in the female 

transcriptome. More specifically, a mitochondria-neuron focused microarray 

could be performed in future cohorts to provide greater insight into the differential 

pathways underlying dietary modifications with specific connections to 

mitochondrial dysfunction (Su et al., 2011).  This assay would be particularly 

prudent in the investigation behind the increase in mitochondrial respiration 

demonstrated in fructose-fed females in the FST, considering that the available 

literature does not provide much evidence to explain this observation.  
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In conclusion, we expand on previous studies conducted on male rats to 

include female rats in the study of how a HFD initiated in adolescence impacts 

affective-like behavior and physiology. The data presented corroborate the 

potential of excessive consumption of fructose to induce physiological changes, 

alterations in anxiety-like and depressive-like behaviors, and alters hormonal 

outcomes. I also demonstrate, for the first time, that a high fructose diet induces 

sex-specific alterations in mitochondrial metabolism. Mitochondrial respiration 

quantification presents an interesting cellular mechanism to connect the 

energetic state of an organism to long-term health outcomes on many levels. 
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